Australia can pick up its game and land a Moon mission



The ‘Stairway to the Moon’ as seen from Western Australia.
Flickr/Gary Tindale, CC BY

Andrew Dempster, UNSW

Now all the celebrations of the 50th anniversary of the Moon landing have died down it’s worth considering where we are with future lunar missions half a century on.

Australia has long played a role in space exploration beyond helping to bring those historic images of the first moonwalk to our television screens back in 1969.

Labor MP Peter Khalil has already called for Australia to be involved in a mission to the Moon, and later to Mars. He is co-chair of the recently reformed Parliamentary Friends of Space, along with the National’s MP Kevin Hogan.




Read more:
Not one but two Aussie dishes were used to get the TV signals back from the Apollo 11 moonwalk


But there is plenty of interest from others in going to the Moon.

The new Moon race

Only last month, India launched its Chandrayaan 2 mission that’s already orbited the Moon and due to land there on September 7.

China recently landed Chang’e-4 on the far side of the Moon while Israel almost succeeded in landing its Beresheet probe.

NASA has committed to sending people to the Moon again by 2024, and to significant lunar infrastructure such as the lunar Gateway, lunar landers and companies to deliver payloads to the Moon.

There is no doubt the Moon has once more captured the world’s interest. One of the reasons for this is human exploration, and that a Moon presence is now recognised as being essential to any future mission to Mars.

Water on the Moon

Another is the presence of water on the Moon, and the usefulness of water for all sorts of reasons in space.

By the time we hosted the second Off-Earth Mining Forum in 2015, it was clear water was the space resource of most immediate interest.

But the companies that existed at that time were mainly looking to source that water from asteroids. It has only been in the past two years that companies like iSpace have come to the fore, aiming at extracting water from the Moon.

Australia has reacted quite quickly to this evolving environment. Only last month, the first workshop met to establish a Remote Operations Institute in Western Australia to look at operating automated machines at a distance – remote mines and space.

The CSIRO identified nine potential “nation-building” flagship space missions, of which four relate to the Moon. One (disclosure, championed by me) is an orbiter and lander aimed at extracting water, but the other three could all support such a mission. Of those nine, four (including mine) have been selected for further examination at a workshop in mid-August in Brisbane.

Since January, we have been working on the Wilde project, where we have re-focussed our space resources research towards the permanently shadowed craters at the Moon’s poles, where water is highly likely to occur in acceptable concentrations.

We are also looking to reduce the risk of investing in a water extraction venture, including the design of orbiter and lander missions.

Explosion of Aussie interest

These Australian initiatives are all being driven in part by the explosion of the Australian space sector. One symptom of this is the establishment of the Australian Space Agency. The agency’s very existence and its promise have further emboldened space businesses and researchers.

But more than a year after its founding we still await any real missions, or commitment to upstream projects (upstream in space projects means those that are actually in space – those great Australian contributions to Apollo were all on the ground – downstream).

The other important driver for the new space projects mentioned above is that Australia has such a strong mining industry, and that so much mining innovation is created in Australia.




Read more:
How big is the Moon? Let me compare …


As disciplines, space and mining have a lot in common: both involve complex engineering systems, work in hostile environments, and human control is increasingly handed over to autonomous robotics. Exploiting resources in space represents a genuine opportunity for Australia to establish a niche around which a sustainable space industry can be built.

So now is a perfect time for Australia to consider a new Moon mission. The industry is growing rapidly and a flagship mission would give it something around which to build.

Our special expertise in resource extraction offers a unique opportunity, which others have only just started to pursue. And a community of companies and researchers has been gathered for the task.

Hopefully it won’t be another 50 years before Australia has its own presence on the Moon.The Conversation

Andrew Dempster, Director, Australian Centre for Space Engineering Research; Professor, School of Electrical Engineering and Telecommunications, UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

Why isn’t Australia in deep space?


David Flannery, Queensland University of Technology

This weekend marks 50 years exactly since humans first walked on the Moon. It also marks Australia’s small but significant role in enabling NASA to place boots on the lunar landscape – or at least to broadcast the event.

Those literally otherworldly images – beamed into countless schools, homes and workplaces – were at times routed through the Parkes Radio Telescope in New South Wales.




Read more:
Not one but two Aussie dishes were used to get the TV signals back from the Apollo 11 moonwalk


Thanks to a strong radioastronomy program dating back to the 1950s, a warm political relationship, and a geographically useful position in the Southern Hemisphere, Australian facilities have served NASA’s Deep Space Network for well over half a century.

The Spaceflight Operations Center at NASA’s Jet Propulsion Laboratory, where the Australian component of the Deep Space Network can often be seen relaying data.
NASA JPL/Caltech

Today, if you walk into the Spacecraft Operations Facility at NASA’s Jet Propulsion Laboratory in Pasadena, California (which served as backup control room for the Apollo missions), you’re sure to notice an Australian flag positioned near a monitor showing a live stream of data from the Deep Space Network. The symbol for the Australian relay flashes as data arrive from spacecraft orbiting objects in the inner Solar System, and from others operating beyond the orbit of Pluto.

Through the Canberra Deep Space Communication Complex, Australia’s telescopes and tracking stations have played a role in every deep space mission since Apollo. However, our involvement is largely serendipitous rather than intentional, with generations of Australian governments having shown close to zero interest in space science.

Until the formation of the Australian Space Agency, almost 49 years to the day since the Parkes dish helped people everywhere watch the moon landings, Australia was the only OECD country without a national space agency.

Yet we were once a genuine space power. Australia was the third nation to launch a satellite from within its national borders, and the seventh overall. During the Apollo era, Woomera was the largest land-based test range in the Western world.

Notwithstanding a recently reinvigorated commercial light launch industry and a range of Earth observation and communications satellites, space science has followed a downward trajectory in Australia ever since. Deep space exploration in particular is viewed as the exclusive playground of superpowers, far too expensive for a middling nation.

Yet examples abound of smaller nations punching well above their weight in deep space. Take Canada, a country of comparable population and wealth to Australia, which has contributed numerous payloads to international missions. The Shuttle Remote Manipulator System, better known as the Canadarm, has worked on both the Space Shuttle and the International Space Station, inspiring a generation of robotics students along the way.

Canada’s Remote Manipulator System (RMS) seen from the Space Shuttle Discovery in 2005.
NASA

Canada will now build and operate a similar instrument on the Lunar Orbital Platform-Gateway, the first stepping stone for astronauts headed to Mars.

Canada will build a new arm for NASA’s Lunar Gateway space station (right).
NASA

Looking towards the next favourable launch window for Mars, which will occur in mid-2020, the United Arab Emirates (with a GDP less than a quarter of Australia’s) will launch its Mars orbiter. The European and Russian space agencies will launch a combined orbiter, lander and rover mission. China is on track to launch the first Chinese Mars rover in the same window, and shortly thereafter India will launch a new Mars orbiter based on the tremendously successful (and, at US$73 million, surprisingly affordable) Mars Orbiter Mission.

NASA’s upcoming Mars 2020 rover mission will carry contributions from France, Norway, Denmark and Italy, to name a few.

Norway has channelled its experience studying glaciers with ground-penetrating radar into a geophysical instrument that will peer below the Martian surface. The Danish Technical University has designed a new lens that can photograph objects the size of a grain of sand on Mars.

And that’s just Mars.




Read more:
What’s the next ‘giant leap’ for humankind in space? We asked 3 space experts


These and many other nations have a front-row seat on multibillion-dollar missions designed to address some of the biggest questions in science. The experience gained will all but ensure they stay on board for yet more ambitious international collaborations in the future.

This sort of contribution is within Australia’s compass, and we are well placed to collaborate with established space powers including the US, Europe, Japan and China. As more of the Solar System is explored and settled by robots, missing out means losing our voice on space policy issues.

Now we have a national space agency, we can at least rebuild the legal framework needed for international collaboration, and develop technologies to pitch to future missions. One hurdle here is the chicken-and-egg problem of having no current product pipeline because of no previous funding.

Fortunately, despite the near-total absence of a local space industry for decades, there is a considerable contingent of Australian expats working in space agencies overseas. This valuable talent pool can hopefully be enticed home.

NASA is developing a nuclear-powered unmanned aerial vehicle for exploring the surface of Titan, one of Saturn’s moons.

A diverse and ambitious array of deep space missions is currently in development. Almost every part of the Solar System is receiving some attention. NASA is developing a lander to study organic molecules on Europa, and has just announced a nuclear-powered drone for exploring Titan. Numerous missions to comets, asteroids and Kuiper Belt Objects are in planning or already underway.

Where might Australia get the best bang for our buck? What’s the next “Moon shot”? After all, we might as well hitch our wagon to the largest beast in the yard.

Arguably, the next grand challenge is to bring Mars samples back to Earth. Both NASA and the Chinese Space Agency are planning missions that could culminate in achieving this during the 2030s.

NASA’s upcoming Mars 2020 Rover.
NASA JPL/Caltech

NASA’s Mars 2020 rover represents the first mission in that series – indeed, one of its instruments will carry out a chemical analysis project led by Australian geologist Abigail Allwood. I am another Australian involved in this mission, and our compatriot Adrian Brown is the Mars 2020 Deputy Program Scientist.

Samples from Mars, some of which will be older than any surviving rocks on Earth, will provide new insights into the evolution of our own planet. They may even answer the question of whether life has evolved elsewhere in the Solar System, and thus whether we are likely ever to encounter living organisms beyond Earth.

This 2.7 bilion-year-old stromatolite grew in a lake environment that was probably similar to the lake that formed the sediments in Jezero Crater on Mars – the landing site for NASA’s next flagship Mars rover mission.
David Flannery

Australia can help answer these kinds of questions, given our expertise in mining geology and remote sensing – not to mention studying the world’s oldest evidence for life on Earth: the ancient microbial fossils of Western Australia.

In this and in other deep space science opportunities, all we lack is the courage to imagine what is possible, and the confidence in our ability to succeed.The Conversation

David Flannery, Planetary Scientist, Queensland University of Technology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

To be a rising star in the space economy, Australia should also look to the East



Diversifying its space partners could help Australia avoid getting pushed around by the space rivalry of China and the United States.
Alex Cherney/CSIRO/EPA

Nicholas Borroz, University of Auckland

The UK’s space agency is already planning for spaceflights to Australia, taking just 90 minutes. This week it announced the site of its first “spaceport”.

Where exactly a spacecraft might land in Australia is still anyone’s guess.

Australia wants to become a bona fide space power in the emerging space economy – exemplified by the rise of private space companies such as SpaceX, Virgin Galactic, Blue Origin and others.

But the UK Space Agency’s well-developed plans to build Europe’s first spaceport in Cornwall, southwest England, as well as another to launch rockets carrying micro-satellites in Sutherland, north Scotland, shows the Australian venture has a lot more groundwork to do.




Read more:
Ten essential reads to catch up on Australian Space Agency news


The Australian government founded the Australian Space Agency just one year ago. It is about to invest tens of millions of dollars in international space projects.

But right now, it could be argued, it has a large problem: How will Australia connect to the rest of the international space economy?

Focused on old friends

Before the Australian Space Agency was founded, Australia’s main international relations regarding outer space were with the United States and some European countries. It has long hosted ground stations for NASA and the European Space Agency.

It has cooperated with other international partners to a lesser extent. The most notable project is the Square Kilometre Array, an astronomy project being built in Australia and South Africa. International partners include Canada, China, India and New Zealand.

Though Australia has indicated it wants to “open doors internationally” for space partnerships, so far it has been focused on building up ties with its old friends in the US and Europe.

The Australian Space Agency has been talking to NASA about cooperation, including on NASA’s Lunar Gateway effort to build a permanent presence on the Moon. It has signed statements of strategic intent with Boeing and Lockheed Martin, two large American aerospace firms that are NASA contractors. A private northern Australian rocket launch company reports it is negotiating to launch NASA sounding rockets next year.




Read more:
NASA and space tourists might be in our future but first we need to decide who can launch from Australia


The US communications firm Viasat plans to build a ground station near Alice Springs. American universities are the only foreign partners of Australia’s newly opened CubeSat and unmanned aerial vehicle research centre, CUAVA.

With the Europeans, the Australian Space Agency has signed memoranda of understanding with France and Britain. The Italian space company SITAEL has expanded to Adelaide, where the Australian Space Agency is based. The federal government’s new SmartSat cooperative research centre has a consortium of nearly 100 industry and research partners. One is the European aerospace giant Airbus, with which the Australian Space Agency has also signed a statement of strategic intent.

These are still early days, but outside of partnerships with the Americans and Europeans, the only major international developments since the Australian Space Agency’s founding are with Canada and the United Arab Emirates.

Ties with China and India

So should Australia diversify its relations?

On the one hand, tying Australia’s space economy to the Americans and Europeans makes sense. Both have large markets and developed space industries. Close ties to both will likely ensure a steady stream of business.

On the other hand, there are benefits to pursuing a new type of multilateralism that is less US- or Euro-centric.

Through the Square Kilometre Array project, Australia has links with China and India. Compared to the Americans and Europeans, these two countries have different competitive strengths in the global space industry.




Read more:
To carve out a niche in space industries, Australia should focus on microgravity research rockets


Positioning between them could put Australia in a unique place in the global production networks of space science and technology. This is particularly so if relations between some of these larger players are distant (the United States and China, for example). Australia could benefit from being a go-between.

Australia could also choose to supplement these larger relationships with ties to smaller countries. Especially with other new entrants into the space economy – New Zealand established a space agency in 2016, for example – there are common points of interest.

All are likely to want to diversify relationships with big space powers and not be pushed into dealing with just one or another. Again, friction between the United States and China comes to mind. Smaller space powers could band together to maintain their ability to make their own independent decisions.

There is no right answer about how Australia should proceed with international engagement in the space economy. More accurately, there are different right answers depending on what sort of space power Australia ultimately wants to become.

Australia’s space agency is just one year old. The country does not need to automatically continue its Western orientation. It can instead recreate itself as a truly international actor in the new space economy.The Conversation

Nicholas Borroz, PhD candidate in international business and comparative political economy, University of Auckland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

NASA and space tourists might be in our future but first we need to decide who can launch from Australia


A SpaceX Falcon 9 rocket launch from Cape Canaveral Air Force Station in Florida, US, May 2019.
NASA Kennedy , CC BY-NC-ND

Melissa de Zwart, University of Adelaide

In a sign the Australian Space Agency is already opening up new doors for Australian industry, NASA says it will be launching rockets from Arnhem Space Centre, in Nhulunbuy in the Northern Territory, in 2020.

Minister for Industry, Science and Technology Karen Andrews has also indicated she will encourage space tourism from Australia. She wants passengers to experience zero-gravity from the convenience of a domestic airport.




Read more:
Five ethical questions for how we choose to use the Moon


But who gets to decide what can be launched into space? That depends on where the launch takes place, and in the case of Australia those rules are currently under review.

International treaty

The authority for who approves, supervises and grants permission for launch of space objects is based on UN treaties that provide a framework for international space law. The most important is the Outer Space Treaty (OST), which entered into force in 1967.

Article VI of the OST provides that nation states (that is, countries) bear “international responsibility” for “national activities” undertaken in outer space by government and commercial users alike.

States remain responsible for activities undertaken by commercial entities – for example, companies such as SpaceX – and are obliged to undertake ongoing supervision of such activities.

How individual countries choose to conduct such supervision is left entirely up to them, but in most cases it is done by way of domestic space law.

Another international treaty, the Liability Convention provides that the liability of the state extends to all launches that are made from that state’s territory. For example, the US is legally responsible for all launches that take place from that country as well as for launches elsewhere that it procures.

This imposes a significant burden on the state to ensure that international requirements are complied with.

Domestic space law regulates matters such as the granting of launch permits, and insurance and indemnity requirements. In Australia, this is achieved through the Space Activities (Launches and Returns) Act 2018. In New Zealand, the Outer Space and High-altitude Activities Act 2017, applies.

The Starlink network

In the US, it’s the Federal Communications Commission (FCC) that gave Elon Musk’s SpaceX permission to launch thousands of Starlink satellites as part of a plan to create a low-orbit internet network.

The licence is for one constellation of 4,409 satellites and a second constellation of 7,518 satellites. The FCC requires launch of half of the total number planned within six years.

The first 60 satellites were launched into orbit last month, and have already given rise to a number of concerns.




Read more:
Lights in the sky from Elon Musk’s new satellite network have stargazers worried


Scientists and astronomers are worried such a large constellation of satellites will be visible to the naked eye in the night sky. In response, Musk has already agreed to make the next batch less shiny.

Penalties apply

As well as granting launch licences, the FCC can also issue fines for any unlicensed launch by US operators.

Swarm Technologies launched four SpaceBee satellites from India in January 2018, after having been denied a licence from the FCC. The FCC was concerned the satellites were too small to be effectively tracked by the US Space Surveillance Network.

FCC subsequently fined Swarm US$900,000, partly as a way to spread the word that licensing of launching is a serious business but because the company had also performed other activities that required FCC authorisation.

In addition to presenting issues for tracking, new satellites also presented a hazard in terms of their potential to create large debris fields.

Notably, there are no binding international laws with respect to the creation of space debris. There are non-binding Space Debris Mitigation Guidelines issued by the UN Inter-Agency Space Debris Coordination Committee. But these are only guidelines and are frequently overlooked in the interests of commercial expediency.

The 2018 Australian Act does require the applicant for various Australian licences (such as a launch permit) to include “a strategy for debris mitigation”. This may include, for example, a plan to de-orbit the satellite after a certain number of years.

Launches from Australia

Australia’s first claim to fame as a space-faring nation was the launch of WRESAT (the Weapons Research Establishment Satellite) from Woomera, South Australia, in 1967.

But the launch platforms on nearby Lake Hart were dismantled following the departure to French Guiana in 1971 of the European Launcher Development Organisation (ELDO) – whose name ELDO still graces the sole hotel in Woomera, in outback South Australia.

The ELDO hotel in Woomera.
Flickr/kool skatkat, CC BY-NC-ND

From this time until the late 1990s there was little interest in space launches from Australia.




Read more:
Lost in space: Australia dwindled from space leader to also-ran in 50 years


The Space Activities Act 1998 was enacted in response to a brief interest in US company Kistler Aerospace developing a spaceport at Woomera, SA.

But no spaceport was constructed nor any launches conducted. A review of the Space Activities Act and of the Australian space industry in 2016-2017 led to the new Space Activities (Launches and Returns) Act in 2018.

This Act envisions a broader role for domestic space industries, including but not limited to, launch.

The rules which flesh out the details of the application of that licensing regime are currently open for public review and comment. The deadline for making a submission closes at the end of this week.The Conversation

Melissa de Zwart, Professor, Adelaide Law School, University of Adelaide

This article is republished from The Conversation under a Creative Commons license. Read the original article.

India destroys its own satellite with a test missile, still says space is for peace


Bin Li, University of Newcastle

On March 27, India announced it had successfully conducted an anti-satellite (ASAT) missile test, called “Mission Shakti”. After the United States, Russia and China, India is now the fourth country in the world to have demonstrated this capability.

The destroyed satellite was one of India’s own. But the test has caused concerns about the space debris generated, which potentially threatens the operation of functional satellites.

There are also political and legal implications. The test’s success may be a plus for Prime Minister Narendra Modi, who is now trying to win his second term in the upcoming election.




Read more:
India’s WhatsApp election: political parties risk undermining democracy with technology


But the test can be viewed as a loss for global security, as nations and regulatory bodies struggle to maintain a view of space as a neutral and conflict-free arena in the face of escalating technological capabilities.

According to the official press release, India destroyed its own satellite by using technology known as “kinetic kill”. This particular technology is usually termed as “hit-to-kill”.

A kinetic kill missile is not equipped with an explosive warhead. Simply put, what India did was to launch the missile, hit the target satellite and destroy it with energy purely generated by the high speed of the missile interceptor. This technology is only one of many with ASAT capabilities, and is the one used by China in its 2007 ASAT test.

Power and strength

Since the first satellite was launched in 1957 (the Soviet Union’s Sputnik), space has become – and will continue to be – a frontier where big powers enhance their presence by launching and operating their own satellites.

There are currently 1,957 satellites orbiting Earth. They provide crucial economic, civil and scientific benefits to the world, from generating income to a wide range of services such as navigation, communication, weather forecasts and disaster relief.

The tricky thing about satellites is that they can also be used for military and national security purposes, while still serving the civil end: one good example is GPS.

So it’s not surprising big powers are keen to develop their ASAT capabilities. The name of India’s test, Shakti, means “power, strength, capability” in Hindi.

Danger of space debris

A direct consequence of ASAT is that it creates space debris when the original satellite breaks apart. Space debris consists of pieces of non-functional spacecraft, and can vary in size from tiny paint flecks to an entire “dead” satellite. Space debris orbits from hundreds to thousands of kilometres above Earth.

The presence of space debris increases the likelihood of operational satellites being damaged.

Although India downplayed the potential for danger by arguing that its test was conducted in the lower atmosphere, this perhaps did not take into account the creation of pieces smaller than 5-10 cm in diameter.

In addition, given the potential self-sustaining nature of space debris, it’s possible the amount of space debris caused by India’s ASAT will actually increase due to the collision.

Aside from the quantity, the speed of space debris is another worrying factor. Space junk can travel at up to 10km per second in lower Earth orbit (where India intercepted its satellite), so even very small particles pose a realistic threat to space missions such as human spaceflight and robotic refuelling missions.

Regulatory catch-up

As we’re seeing clearly now in social media, when technology moves fast the law can struggle to keep up, and this leads to regulatory absence. This is also true of international space law.

Five fundamental global space treaties were created 35-52 years ago:

  • Outer Space Treaty (1967) – governs the activities of the states in exploration and use of outer space
  • Rescue Agreement (1968) – relates to the rescue and return of astronauts, and return of launched objects
  • Liability Convention (1972) – governs damage caused by space objects
  • Registration Convention (1967) – relates to registration of objects in space
  • Moon Agreement (1984) – governs the activities of states on the Moon and other celestial bodies.



Read more:
I’ve Always Wondered: could someone take ownership of a planet or a moon?


These were written when there were only a handful of spacefaring nations, and space technologies were not as sophisticated as they are now.

Although these treaties are binding legal documents, they leave many of today’s issues unregulated. For example, in terms of military space activities, the Outer Space Treaty only prohibits the deployment of weapons of mass destruction in space, not conventional weapons (including ballistic missiles, like the one used by India in Mission Shakti).

In addition, the treaty endorses that outer space shall be used exclusively for peaceful purposes. However, the issue is how to interpret the term “peaceful purposes”. India claimed, after its ASAT test:

we have always maintained that space must be used only for peaceful purposes.

When terms such as “peaceful” seem to be open to interpretation, it’s time to update laws and regulations that govern how we use space.

New approaches, soft laws

Several international efforts aim to address the issues posed by new scenarios in space, including the development of military space technologies.

For example, McGill University in Canada has led the MILAMOS project, with the hope of clarifying the fundamental rules applicable to the military use of outer space.




Read more:
We’re drafting a legal guide to war in space. Hopefully we’ll never need to use it


A similar initiative, the Woomera Manual, has been undertaken by Adelaide Law School in Australia.

Though commendable, both projects will lead to publications of “soft laws”, which will have no legally binding force on governments.

The UN needs to work much harder to attend to space security issues – the Disarmament Commission and Committee on the Peaceful Uses of Outer Space can be encouraged to collaborate on the issues regarding space weapons.

It is in everyone’s best interests to keep space safe and peaceful.The Conversation

Bin Li, Lecturer, University of Newcastle

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia: well placed to join the Moon mining race … or is it?



File 20190214 1726 alb497.jpg?ixlib=rb 1.1
The Moon could be mined for water.
NASA/JPL

Andrew Dempster, UNSW

It’s 50 years since man first stepped on the Moon. Now the focus is on going back to our nearest orbiting neighbour – not to leave footprints, but to mine the place.

Australia has a well-earned reputation as a mining nation. We are home to some of the largest mining companies (such as Vale, Glencore, Rio Tinto, and BHP), some of the best mine automation, and some of the best mining researchers.




Read more:
How realistic are China’s plans to build a research station on the Moon?


But do we have the drive and determination to be part of any mining exploration of the Moon?

To the Moon

As far as space goes, the Moon is sexy again. Within the past three months:

  • the Chinese landed a rover on the Moon’s far side

  • NASA announced it is partnering with nine companies to deliver payloads to the Moon, consistent with its new push for more Moon missions

  • the Moon Race competition has been announced, looking at entries in four themes: manufacturing, energy, resources, biology

  • the European Space Agency (ESA) announced its interest in mining the Moon for water

  • a US collaborative study was released about commercial exploitation of water from the Moon.

Not to be outdone, there is an Australian angle. We at the Australian Centre for Space Engineering Research (ACSER) announced our Wilde mission to extract water from the shaded craters at the Moon’s poles.

Australian interests

The Australian angle is important. With the establishment of Australia’s Space Agency, there is a need for us to try to establish niches in space, and it makes sense to exploit our strengths in mining to do so.

This is consistent with one of the agency’s priorities of:

… developing a strategy to position Australia as an international leader in specialised space capabilities.

As the agency’s chief executive Megan Clark told the subscription newsletter Space and Satellite AU earlier this month:

Rio Tinto is developing autonomous drilling and that’s the sort of thing you will need to do on Mars and on the Moon. While we’re drilling for iron ore in the Pilbara, on the Moon they might be looking for basic resources to survive like soils, water and oxygen.

The CSIRO has also put space resource utilisation into its space road map (which can be downloaded here). At each of the two most recent CSIRO Space 2.0 workshops, the attendees voted space resource utilisation (off-Earth mining) to be the most promising opportunity discussed.

The ultimate aim of space mining is to exploit asteroids, the most valuable – known as 511 Davida – is estimated to be worth US$27 quintillion (that’s or 27×1018 or 27 million million million dollars). Another estimate puts that value closer to US$1 trillion, which is still a lot of potential earning.

Risky business

The opportunities are enormous, but the risks are high too – risks with which mining companies are currently not familiar. The high-level processes are familiar such as exploration (prospecting), mining methods, processing, transportation, but the specifics of doing those things in such challenging conditions – vacuum, microgravity, far from Earth, and so on – are not.

The research we are proposing for the Wilde project aims to start chipping away at reducing those perceived risks, to the point where big miners are more comfortable to invest.

One of the important risks in any mining is the legal framework. Two international treaties apply quite specifically in this case: the Outer Space Treaty of 1967 (ratified by 107 countries and signed by a further 23) and the Moon Agreement (or Moon Treaty, ratified by 18 and signed by a further four) of 1979. Australia has ratified both.

When it comes to trying to determine from these treaties whether space mining is allowed, there are two problems.

First, the treaties were drafted at a time when the problems they were trying to avoid were geopolitical. Space activity was considered to be the realm of nation states and they wanted celestial bodies not to be considered property of any nation states.

Second, commercial exploitation of resources is never explicitly mentioned. (A third problem could be that the treaties have never been tested in court.)

This creates a situation in which the interpretation of the treaties can lead to strong support to both sides of the argument. For instance, Article 1 of the Outer Space Treaty says:

The exploration and use of outer space, including the Moon and other celestial bodies, shall be carried out for the benefit and in the interests of all countries, irrespective of their degree of economic or scientific development, and shall be the province of all mankind.

This could preclude commercial development.

But the same article also states:

Outer space, including the Moon and other celestial bodies, shall be free for exploration and use by all States without discrimination of any kind, on a basis of equality and in accordance with international law, and there shall be free access to all areas of celestial bodies.

This could enshrine the right to use those same resources.

For all humanity

There are similar disputes about what exactly was meant when other articles in that treaty refer to sovereignty, appropriation, exploration and use.

The Moon Treaty deals with scientific and non-scientific use of space resources. Article 11 states that the Moon and other celestial bodies and their resources are the common heritage of all mankind (a less gender-specific phrase would be “all humanity”), and that the exploitation of resources would be governed by an international regime, not defined in the treaty. It also dictates “an equitable sharing by all States Parties in the benefits derived from those resources”.




Read more:
Curious Kids: How does the Moon, being so far away, affect the tides on Earth?


On the face of it, this may appear to put signatories to this agreement at a disadvantage, by constraining them as to what they can do.

Other global commons such as the high seas, Antarctica and geostationary orbit are well regulated by comparison, and given that the Moon Treaty envisages that “regime” of rules, then it may be time to define that regime, and, as a Treaty signatory with an interest in space resources, Australia has the motivation to lead that discussion.

How that initiative will evolve will depend on various factors, but the next time it gets a public airing, at the Off-Earth Mining Forum in November, we hope to have made significant progress.The Conversation

Andrew Dempster, Director, Australian Centre for Space Engineering Research; Professor, School of Electrical Engineering and Telecommunications, UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Queensland’s floods are so huge the only way to track them is from space


Linlin Ge, UNSW

Many parts of Queensland have been declared disaster zones and thousands of residents evacuated due to a 1-in-100-year flood. Townsville is at the epicentre of the “unprecedented” monsoonal downpour that brought more than a year’s worth of rain in just a few days, and the emergency is far from over with yet more torrential rain expected.

Such monumental disruption calls for emergency work to safeguard crucial infrastructure such as bridges, dams, motorways, railways, power substations, power lines and telecommunications cables. In turn, that requires accurate, timely mapping of flood waters.

For the first time in Australia, our research team has been monitoring the floods closely using a new technique involving European satellites, which allows us to “see” beneath the cloud cover and map developments on the ground.




Read more:
Floods don’t occur randomly, so why do we still plan as if they do?


Given that the flooding currently covers a 700km stretch of coast from Cairns to Mackay, it would take days to piece together the big picture of the flood using airborne mapping. What’s more, conventional optical imaging satellites are easily “blinded” by cloud cover.

But a radar satellite can fly over the entire state in a matter of
seconds, and an accurate and comprehensive flood map can be produced in less than an hour.

Eyes above the skies

Our new method uses an imaging technology called “synthetic aperture radar” (SAR), which can observe the ground day or night, through cloud cover or smoke. By combining and comparing SAR images, we can determine the progress of an unfolding disaster such as a flood.

In simple terms, if an area is not flooded on the first image but is inundated on the second image, the resulting discrepancy between the two images can help to reveal the flood’s extent and identify the advancing flood front.

To automate this process and make it more accurate, we use two pairs of images: a “pre-event pair” taken before the flood, and a “co-event pair” made up of one image before the flood, and another later image during the flooding.

The European satellites have been operated strategically to collect images globally once every 12 days, making it possible for us to test this new technique in Townsville as soon as flooding occurs.

To monitor the current floods in Townsville, we took the pre-event images on January 6 and January 18, 2019. The co-event pair was collected on January 18 and January 30. These sets of images were then used to generate the accurate and detailed flood map shown below.

The image comparisons can all be done algorithmically, without a human having to scrutinise the images themselves. Then we can just look out for image pairs with significant discrepancies, and then concentrate our attention on those.

Satellite flood mapping along the Queensland coast, compiled using images from the European radar satellite Sentinel-1A.
European Space Agency/Smart Spatial Technology Development Laborator (SSTD), UNSW, Author provided



Read more:
Planning for a rainy day: there’s still lots to learn about Australia’s flood patterns


Our technique potentially avoids the need to monitor floods from airborne reconnaissance planes – a dangerous or even impossible task amid heavy rains, strong wind, thick cloud and lightning.

This timely flood intelligence from satellites can be used to switch off critical infrastructure such as power substations before flood water reaches them.The Conversation

Linlin Ge, Professor, UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How realistic are China’s plans to build a research station on the Moon?


Joshua Chou, University of Technology Sydney

The world is still celebrating the historic landing of China’s Chang’e-4 on the dark side of the moon on January 3. This week, China announced its plans to follow up with three more lunar missions, laying the groundwork for a lunar base.

Colonising the Moon, and beyond, has always being a human aspiration. Technological advancements, and the discovery of a considerable source of water close to the lunar poles, has made this idea even more appealing.

But how close is China to actually achieving this goal?

If we focus on the technology currently available, China could start building a base on the Moon today.




Read more:
Will China’s moon landing launch a new space race?


The first lunar base

The first lunar base would likely be an unmanned facility run by automated robotics – similar to Amazon warehouses – to ensure that the necessary infrastructures and support systems are fully operational before people arrive.

The lunar environment is susceptible to deep vacuum conditions, strong temperature fluctuations and solar radiation, among other conditions hostile to humans. More importantly, we have yet to fully understand the long term impact on the human body of being in space, and on the Moon.

Seeds taken to the Moon by the Chang’e-4 mission have now reportedly sprouted. This is the first time plants have been grown on the Moon, paving the way for a future food farm on the lunar base.

Building a lunar base is no different than building the first oil rig out in the ocean. The logistics of moving construction parts must be considered, feasibility studies must be conducted and, in this case, soil samples must be tested.

China has taken the first step by examining the soil of the lunar surface. This is necessary for building an underground habitat and supporting infrastructure that will shield the base from the harsh surface conditions.

3D printed everything

Of all the possible technologies for building a lunar base, 3D printing offers the most effective strategy. 3D printing on Earth has revolutionised manufacturing productivity and efficiency, reducing both waste and cost.

China’s vision is to develop the capability to 3D print both inside and outside of the lunar base. 3D printers have the potential to make everything from daily items, like drinking cups, to repair parts for the base.

But 3D printing in space is a real challenge. It will require new technologies that can operate in the micro gravity environment of the Moon. 3D printing machines that are able to shape parts in the vacuum of space must be developed.




Read more:
Want to build a moon base? Easy. Just print it


New materials are required

We know that Earth materials, such as fibre optics, change properties once they are in space. So materials that are effective on Earth, might not be effective on the Moon.

Whatever the intended use of the 3D printed component, it will have to be resistant to the conditions of lunar environment. So the development of printing material is crucial. Step-by-step, researchers are finding and developing new materials and technologies to address this challenge.

For example, researchers in Germany expect to have the first “ready to use” stainless steel tools to be 3D printed under microgravity in the near future. NASA also demonstrated 3D printing technology in zero gravity showing it is feasible to 3D print in space.

On a larger scale we have seen houses being 3D printed on Earth. In a similar way, the lunar base will likely be built using prefabricated parts in combination with large-scale 3D printing.

Examples of what this might look like can be seen to entries in the 3D printed habitat challenge, which was started by NASA in 2005. The competition seeks to advance 3D printing construction technology needed to create sustainable housing solutions for Earth, the Moon, Mars and beyond.

NASA’s Habitat Challenge: Team Gamma showing their habitat design.
NASA 3D Printed Habitat Challenge

Living on the Moon

So far, we’ve focused on the technological feasibility of building a lunar base, but we also need to consider the long term effect of lunar living on humans. To date, limited studies have been conducted to examine the the biological impact on human physiology at the cellular level.

We know that the human organs, tissues and cells are highly responsive to gravity, but an understanding of how human cells function and regenerate is currently lacking.

What happens if the astronauts get sick? Will medicine from Earth still work? If astronauts are to live on the Moon, these fundamental questions need to be answered.

In the long term, 3D bioprinting of human organs and tissues will play a crucial role in sustaining lunar missions by allowing for robotic surgeries. Russia recently demonstrated the first 3D bioprinter to function under microgravity.




Read more:
Five reasons to forget Mars for now and return to the moon


To infinity and beyond

Can China build a lunar base? Absolutely. Can human beings survive on the Moon and other planets for the long term? The answer to that is less clear.

What is certain is that China will use the next 10 to 15 years to develop the requisite technical capabilities for conducting manned lunar missions and set the stage for space exploration.The Conversation

Joshua Chou, Senior lecturer, University of Technology Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia is still listening to Voyager 2 as NASA confirms the probe is now in interstellar space



File 20181210 76968 fmrjil.jpg?ixlib=rb 1.1
Both Voyagers are now in interstellar space.
NASA

Douglas Bock, CSIRO

NASA has confirmed that Voyager 2 has joined its twin to become only the second spacecraft to enter interstellar space – where the Sun’s flow of material and magnetic field no longer affect its surroundings. The slightly faster Voyager 1 entered interstellar space in August 2012.

Voyager 2 is about 18 billion kilometres from Earth and still sending back data that are picked up by radio telescopes in Australia.

Mission scientists had been closely monitoring the spacecraft for signs that it had exited the heliosphere, a protective bubble created by the Sun as we move through our galaxy.




Read more:
New detections of gravitational waves brings the number to 11 – so far


Data from Voyager 2 indicate an increase in the rate of cosmic rays hitting the spacecraft’s detectors. These fast-moving particles are known to originate outside our solar system.

Voyager 1 experienced a similar increase about three months before it crossed the heliopause, the boundary of the heliosphere.

Scientists for Voyager 2 detected a steep drop in the speed of solar wind particles on November 5, and no solar wind flow at all in the spacecraft’s environment since then. This makes them confident the spacecraft has entered interstellar space.

This artist’s concept shows Voyager and the outer layers of our solar bubble, or heliosphere, and nearby interstellar space.
NASA/JPL-Caltech, NASA/JPL-Caltech Photojournal

Still operational, just

Unfortunately not all of Voyager 2’s instruments are still operational. Its on-board data recorder failed many years ago, leaving the spacecraft with no option other than to transmit all of its data back to Earth in real time.

This means that if the spacecraft isn’t being tracked, its data aren’t being received and will be lost forever.

NASA’s Canberra Deep Space Communication Complex (CDSCC), operated by CSIRO, has been providing command, telemetry and control for the twin Voyager spacecraft since their launch in 1977. This is part of its role as one of three tracking stations for NASA’s Deep Space Network. The other two are Goldstone in California and Madrid in Spain.

Communicating with Voyager 2 is challenging due to its location in the southern part of the Solar System, and its extreme distance from Earth (roughly 120 times that between the Sun and the Earth).

Voyager 2 transmits with a power of just 20 watts. By the time the signal reaches Earth nearly 16.5 hours later, it’s billions of times weaker than the power of a watch battery.

Only Australia is listening

Because of their location in the Southern Hemisphere and their large antennas, CDSCC and CSIRO’s Parkes radio telescope are the only facilities in the world that can contact the spacecraft.

The Parkes radio telescope.
CSIRO, Author provided

To capture as much scientifically valuable data as possible during this crucial period in Voyager 2’s mission, NASA engaged CSIRO’s 64-metre Parkes radio telescope to combine forces with CDSCC’s 70-metre antenna, Deep Space Station 43 (DSS43).

After a week of testing, on November 8 the Parkes radio telescope started tracking Voyager 2 for 11 hours a day – the entire period it is above the local horizon. CDSCC’s DSS43 is also tracking Voyager 2 for a number of hours, both before and after Parkes, to expand the available observation time.

CDSCC’s 70-metre antenna, Deep Space Station 43.
CSIRO, Author provided

The data these two giant dishes are receiving will provide an enormous amount of new scientific information about this previously unsampled region of space.

The Parkes radio telescope has had a long partnership with the Voyager 2 mission. This will be the fourth time the telescope will have tracked the spacecraft. Parkes will continue partnering with CDSCC until late February to track Voyager 2.

Where no spacecraft has gone before

Both Voyager spacecraft have achieved far more than the science team on Earth could have ever expected. Launched in 1977, their prime mission was to investigate the four giant planets of our Solar System: Jupiter, Saturn, Uranus, and Neptune.

Farewell shot of crescent Uranus as Voyager 2 departs. January 25, 1986. Range 966,000 km (600,000 miles)
NASA

Voyager 1 and 2 both flew by Jupiter and Saturn, and a favourable planetary alignment allowed Voyager 2 to add Uranus and Neptune to its journey. Voyager 2 is the only spacecraft ever to have visited these two gas giant worlds.

Voyager 2’s journey across the Solar System

  • 20 August 1977 – Launched from Earth at Cape Canaveral
  • July 1979 – fly by Jupiter
  • August 1981 – fly by Saturn
  • January 1986 – fly by Uranus

Since the Neptune encounter in 1989, both spacecraft have been on an extended mission through the outer regions of the Sun’s magnetic bubble, the heliosphere.

Neptune’s Great Dark Spot, accompanied by white high-altitude clouds.
NASA

While their cameras were turned off long ago, the spacecraft continue to return data from several instruments that are collecting information on the Sun’s magnetic field:

  • the distribution of hydrogen within the outer heliosphere
  • the composition and direction of the solar wind and interstellar cosmic rays
  • and the strength of radio emissions that are thought to be originating at the heliopause.

To conserve power and operate them for as long as possible, mission planners have been turning off various instruments.

However, it’s likely that by 2025, only one science instrument will still be operating and then once it’s switched off, only the transmitter will be on and returning engineering data into the early 2030s. At that point, they will fall silent, no longer able to communicate with Earth.

The next stop

Racing through interstellar space, both spacecraft will continue on their respective trajectories, Voyager 1 at 61,198kph (16.999km per second) and Voyager 2 at 55,347kph (15.374km per second).

Even at that speed, covering more than 1.4 million kilometres each day, neither spacecraft will come close to another star for at least another 40,000 years.




Read more:
Curious Kids: What existed before the Big Bang? Did something have to be there to go boom?


The Voyager mission continues, orbiting the Milky Way galaxy every 225 million years and potentially encountering other star systems along the way.

Each spacecraft carries a golden record with images, music and information about planet Earth and its inhabitants. It’s a message in a bottle thrown into a vast cosmic ocean.The Conversation

The Golden Record cover shown with its extraterrestrial instructions.
NASA/JPL

Douglas Bock, Director of Astronomy and Space Science, CSIRO

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The problems with small satellites – and what Australia’s Space Agency can do to help


Duncan Blake, University of Adelaide

Australia is part of the global explosion in space industries – including the design and engineering of satellites smaller than a loaf of bread.

But we’re at a point now where we need to take the next step.

The growing number of small satellites orbiting Earth presents some unique challenges, such as interference with communication networks, the buildup of space junk, and the legal questions that arise if something goes wrong.

Australia’s new Space Agency can play a vital role in coordinating our government policy around these issues.




Read more:
Yes we’ve got a space agency – but our industry needs ‘Space Prize Australia’


Acceleration in small sats

Since Sputnik 1 in 1957, there have been 8,303 registered space objects. Only 20 of those, so far, have been registered to Australia, but five satellites have been launched for Australia in just the past four weeks (although not all of them have been registered yet).

Fleet Space in Adelaide had two satellites launched from New Zealand, one from India and one from the United States. The University of New South Wales in Canberra had the M1 satellite launched on the same rocket as the Fleet Space satellite from the US.

Globally, there are almost 1,900 active satellites in orbit. That number is set to increase rapidly in the near future – regulators in the US alone have recently approved more than 12,000 new satellites to be launched into space over the next decade.

In Australia, Fleet Space plans to launch 100 satellites over the next decade.

The volume is growing, but the satellites are shrinking. We’ve moved from satellites the size of buses, to those similar in size to a washing machine, to cubesats (10x10x10cm), and even smaller still.




Read more:
We’re drafting a legal guide to war in space. Hopefully we’ll never need to use it


Australia has committed itself to secure a large proportion of a global space market worth more than A$400 billion, tripling the Australian space industry from A$4 billion to A$12 billion and growing many thousands of jobs in the many new space start-ups in Australia.

That’s great news for the Australian economy, and the new Australian Space Agency has the mandate to make that happen.

Here’s where we need new policy around satellites to meet the challenges involved.

1. Congestion in signalling networks

Communication with your satellite is essential, even if communication is not its main purpose – to get data from remote sensing satellites, navigational satellites, experimental satellites, or just to track it, control it and monitor its status. But the use of radio frequency by small satellites has been hotly contested.

Big satellite manufacturers and operators, and others, oppose the allocation of frequency to small satellites through the international regulator – the International Telecommunications Union and its domestic equivalent – the Australian Communication and Media Authority (ACMA).

Notwithstanding that big satellite manufacturers and operators have a commercial incentive to oppose the disruptive upstarts, they have a point.

Small satellites don’t use less bandwidth in proportion to their small size (although they may transmit with less power). So, by their sheer number, they represent a significant risk of congestion and interference in the electromagnetic spectrum – leading to mobile phones not working properly, WiFi networks being degraded, and maybe even failure of your Netflix account.

The ACMA is seeking solutions to those potential problems, but if the solutions involve imposing significant technical and financial burdens on new space start-ups, these companies may go offshore to find better solutions – a loss for Australia.

2. The problem of space junk

Small satellites add to the space debris problem in outer space – because a significant proportion of them fail and not all of them follow international best practice (such as it is) on the operation of small satellites.

For example, US company Swarm Technologies went ahead with the launch of several very small satellites known as “Space Bees” via a launch on an Indian rocket even though the US Federal Communications Commission had previously declined to grant them a licence, on the basis that they were too small to be tracked, thereby making collision avoidance impossible.

SpaceFlight, a company that finds and facilitates launch opportunities for satellite operators, facilitated this opportunity for Swarm Technologies, and it was SpaceFlight that facilitated launch opportunities for the five Australian satellites launched in the last four weeks.

To be fair, Swarm Technologies and SpaceFlight have taken good steps to earn back the confidence of regulators in the US and globally, but it does demonstrate the need for clear and enforced best practice standards.

Unfortunately, there is a lack of consensus internationally on what those standards should be.

In Australia, our Space Agency has yet to decide on the content of subordinate legislation (Rules) under the new Space Activities (Launches and Returns) Act 2018 that may commit Australia to best practice standards for small satellites.

Again, there is a difficult balancing act – if the standards are too lax, there is a greater possibility of something going wrong and we lose reputation, influence, bargaining power and the opportunity to optimise international conditions for Australian commercial and other national interests.

If they are too strict, new space start-ups may find them unpalatable, and move their operations offshore – and the prospect of new jobs and economic growth in the industry dissipates.

3. Mistakes can happen

What happens if something does go wrong? Who bears the liability?

Under international law, in the first instance, liability rests with any state that launches, procures the launch or whose facility or territory is used for launch. Ultimately, that means the taxpayer.

A small satellite could conceivably be responsible for a failure at launch, or a collision in orbit, where there is infrastructure worth many hundreds of billions of dollars (not least, the International Space Station). Thankfully, the probability of any such failure or collision is generally extremely small.

But who accepts that risk of liability on behalf of the Australian taxpayer? For non-governmental operators, it is the Australian Space Agency.

Government operators are largely exempt from the legislation. Australia’s Department of Defence has been involved in the recent Buccaneer cubesat and the M1 cubesat, and CSIRO has recently initiated a project to acquire its own cubesat.

An artist’s impression of CSIROSat-1 CubeSat.
Inovor Technologies

There is the possibility of different standards within government and relative to the private sector. Australia’s Space Agency does not currently have a strong mandate to coordinate across all space activities in which our nation participates.

In the case of the Buccaneer cubesat and the M1 cubesat, the University of New South Wales in Canberra – which built and arranged the launch of the satellites – is subject to control by the Space Agency under legislation.

In other cases, the Space Agency will have to engage and influence others through excellent communication and soft influence. So far, the staff and leadership of the agency have managed that with great skill.

But there’s more work to be done.




Read more:
It’s not clear where Trump’s ‘Space Force’ fits within international agreement on peaceful use of space


The Conversation


Duncan Blake, PhD candidate, law and military uses of outer space, University of Adelaide

This article is republished from The Conversation under a Creative Commons license. Read the original article.