Space can solve our looming resource crisis – but the space industry itself must be sustainable


Richard Matthews, University of Adelaide

Australia’s space industry is set to grow into a multibillion-dollar sector that could provide tens of thousands of jobs and help replenish the dwindling stocks of precious resources on Earth. But to make sure they don’t flame out prematurely, space companies need to learn some key lessons about sustainability.

Sustainability is often defined as meeting the needs of the present without compromising the ability of future generations to meet their own needs. Often this definition is linked to the economic need for growth. In our context, we link it to the social and material needs of our communities.

We cannot grow without limit. In 1972, the influential report The Limits to Growth argued that if society’s growth continued at projected rates, humans would experience a “sudden and uncontrollable decline in both population and industrial capacity” by 2070. Recent research from the University of Melbourne’s sustainability institute updated and reinforced these conclusions.

Our insatiable hunger for resources increases as we continue to strive to improve our way of life. But how does our resource use relate to the space industry?




Read more:
Dig deep: Australia’s mining know-how makes it the perfect $150m partner for NASA’s Moon and Mars shots


There are two ways we could try to avert this forecast collapse: we could change our behaviour from consumption to conservation, or we could find new sources to replenish our stocks of non-renewable resources. Space presents an opportunity to do the latter.

Asteroids provide an almost limitless opportunity to mine rare earth metals such as gold, cobalt, nickle and platinum, as well as the resources required for the future exploration of our solar system, such as water ice. Water ice is crucial to our further exploration efforts as it can be refined into liquid water, oxygen, and rocket fuel.

But for future space missions to top up our dwindling resources on Earth, our space industries themselves must be sustainable. That means building a sustainable culture in these industries as they grow.

How do we measure sustainability?

Triple bottom-line accounting is one of the most common ways to assess the sustainability of a company, based on three crucial areas of impact: social, environmental, and financial. A combined framework can be used to measure performance in these areas.

In 2006, UTS sustainable business researcher Suzanne Benn and her colleagues introduced a method for assessing the corporate sustainability of an organisation in the social and environmental areas. This work was extended in 2014 by her colleague Bruce Perrott to include the financial dimension.

This model allows the assessment of an organisation based on one of six levels of sustainability. The six stages, in order, are: rejection, non-responsiveness, compliance, efficiency, strategic proactivity, and the sustaining corporation.

Sustainability benchmarking the space industry

In my research, which I presented this week at the Australian Space Research Conference in Adelaide, I used these models to assess the sustainability of the American space company SpaceX.

Using freely available information about SpaceX, I benchmarked the company as compliant (level 3 of 6) within the sustainability framework.

While SpaceX has been innovative in designing ways to travel into space, this innovation has not been for environmental reasons. Instead, the company is focused on bringing down the cost of launches.

SpaceX also relies heavily on government contracts. Its profitability has been questioned by several analysts with the capital being raised through the use of loans and the sale of future tickets in the burgeoning space tourism industry. Such a transaction might be seen as an exercise in revenue generation, but accountants would classify such a sale as a liability.

The growing use of forward sales is a growing concern for the industry, with other tourism companies such as Virgin Galactic failing to secure growth. It has been reported that Virgin Galactic will run out of customers by 2023 due to the high costs associated with space travel.




Read more:
NASA and space tourists might be in our future but first we need to decide who can launch from Australia


SpaceX’s culture also rates poorly for sustainability. As at many startups, employees at SpaceX are known to work more than 80 hours a week without taking their mandatory breaks. This problem was the subject of a lawsuit settled in 2017. Such behaviour contravenes Goal 8 of the UN Sustainable Development Goals, which seeks to achieve “decent work for all”.

What’s next?

Australia is in a unique position. As the newest player in the global space industry, the investment opportunity is big. The federal government predicts that by 2030, the space sector could be a A$12 billion industry employing 20,000 people.

Presentations at the Australian Space Research Conference by the Australian Space Agency made one thing clear: regulation is coming. We can use this to gain a competitive edge.




Read more:
From tourism to terrorists, fast-moving space industries create new ethical challenges


By embedding sustainability principles into emerging space startups, we can avoid the economic cost of having to correct bad behaviours later.

We will gain the first-mover advantage on implementing these principles, which will in turn increase investor confidence and improve company valuations.

To ensure that the space sector can last long enough to provide real benefits for Australia and the world, its defining principle must be sustainability.The Conversation

Richard Matthews, Research Associate | Councillor, University of Adelaide

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Dig deep: Australia’s mining know-how makes it the perfect $150m partner for NASA’s Moon and Mars shots


Andrew Dempster, UNSW

In the wake of Prime Minister Scott Morrison’s meeting with US President Donald Trump, the Australian government announced on Sunday a commitment of A$150million “into our local businesses and new technologies that will support NASA on its inspirational campaign to return to the Moon and travel to Mars”.

It is unclear at this point where the government intends to spend this money, but there’s no harm in some reflective speculation.




Read more:
The big global space agencies rely on Australia – let’s turn that to our advantage


Because this new commitment is to deep space missions, clearly it is separate from the A$245 million being invested in Australia’s Smartsat Cooperative Research Centre or the A$4.5 million for the Centre for Cubesats, UAVs and their Applications, both of which are generally looking at applications in Earth orbit.

The funding should also be separate from that committed to two Australian Space Agency initiatives: the A$6 million Mission Control Centre for South Australia, and the A$4.5 million Robotics, Automation and Artificial Intelligence Command and Control Centre for Western Australia. Both of these centres could, however, be used in any planned Moon and Mars initiatives.

The funding allocation should also not include the money already committed to space projects by CSIRO under its Space Technology Future Science Platforms initiative.

Where should it be spent?

In thinking about where the money can be spent, it’s worth noting the brief is explicitly to “support NASA”. So, where could Australia help?

NASA’s Orion spacecraft, centrepiece of the Artemis mission, will need lots of technical support.
NASA

NASA’s two main lunar initiatives are the Lunar Gateway and Project Artemis, both of which have been mentioned in relation to Australia’s funding pledge. Mars may be the long-term destination, but the Moon is where it’s at right now.

The Lunar Gateway is infrastructure: a spacecraft placed in a halo orbit (always in view of Earth) that is sometimes as close as 3,000km to the Moon’s surface. It will be used as a hub for astronauts, equipment and communications, and a staging post for lunar landings and returns.

Artemis aims to use NASA’s large new rocket, the Space Launch System, to deliver astronauts, including the first woman to walk on the Moon, to the lunar surface by 2024. It will develop a host of new technologies and is openly collaborative.




Read more:
Why isn’t Australia in deep space?


One contribution that cannot be ignored in this context is the technology emerging from Australia’s dominant mining industry. The strength in robotics, automation and remote operations has led to the above-mentioned robotics centre being slated for WA. What’s more, the Australian Remote Operations in Space and on Earth institute, a wide-ranging industry collaboration launched in July, is also likely to be headquartered in WA.

Another area where Australia is developing interesting technology is in optical communications with spacecraft, being driven by research at the Australian National University. At a recent CSIRO workshop to develop “flagship” missions for Australia, the idea of using lasers to beam communications rapidly to the Moon and back was highly rated.

Putting ideas out there

Of the nine possible flagships considered, seven are potentially relevant to the new funding. These include a space weather satellite, an asteroid detection system, a cubesat to Mars, a radiotelescope on the Moon, and a solar sail that could power spacecraft to the Moon. There are plenty of good Australian ideas around.

However, the flagship most closely related to the content of the announcement was a project proposal (disclosure: it’s mine!) that would place an orbiter around the Moon and design a lander/rover to establish our ability to extract water from permanent ice. Water can be used for many things in a settlement, and when split into hydrogen and oxygen it can be used as rocket fuel to move things around, including to Mars.




Read more:
Australia can pick up its game and land a Moon mission


All of our research in this area has focused on how this can be done in a commercial way, very much in line with the philosophy of “Space 2.0”. We are putting together a significant team of academics, companies (not just mining and space ones), and agencies to pursue these missions seriously.

There has never been a better time to be working in the space sector in Australia. I and all of my colleagues in the field hope the latest announcement is the next step in establishing the vibrant, sustainable space industry so many in Australia now see as achievable.The Conversation

Andrew Dempster, Director, Australian Centre for Space Engineering Research; Professor, School of Electrical Engineering and Telecommunications, UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.