Explainer: how to extend your phone’s battery life



File 20170727 25725 1rb3q0z
Without proper care, mobile phone batteries can degrade and hold less charge.
Arthur Mustafa/Shutterstock

Jacek Jasieniak, Monash University

As mobile phone users, all we want is enough battery life to last the day. Frustratingly, the older the device, the less power it seems to have.

In fact, the amount of battery life our mobiles have on any given day depends on two key factors: how we use them on that particular day, and how we used them in the past.

Mobile phones use lithium-ion batteries for energy storage. In this type of battery, lithium metal and lithium ions move in and out of individual electrodes, causing them to physically expand and contract.


Read more: Do you know where your batteries come from?


Unfortunately, these processes are not completely reversible and the batteries lose their charge capacity and voltage as the number of charge and discharge cycles grows.

To make matters worse, the electrolyte (electrically conductive liquid) that connects the electrodes also degrades throughout these cycles.

The ability of lithium-ion batteries to store charge depends on the extent of their degradation. This means there is a link between how we handle our devices today and the charge capacity available in the future.

Through a few simple steps, users can minimise this degradation and extend their device’s life.

Lithium ion batteries are the main battery type in mobile phones.
Andy Melton/Flickr, CC BY-SA

Strategies for extending battery capacity

Control battery discharge

Typical lithium-ion batteries for mobile phones are supposed to retain 80% of their charge capacity after 300-500 charge/discharge cycles. However, batteries rarely produce this level of performance, with charge storage capacity sometimes reduced to 80% levels within only 100 cycles.

Fortunately, we can extend our future battery capacity by limiting how much we discharge our mobile phone batteries. With most battery degradation occurring during deep discharge/charge cycles, it is actually better to limit the battery discharge during any one cycle before charging it again.

As it happens, our devices do have battery-management systems, which reduce damage from overcharging and shut down automatically if the battery gets too low.

Nonetheless, to maximise the battery capacity in the future we should avoid that 0% battery mark altogether, while also keeping those batteries at least partially charged if storing them for a prolonged period of time to avoid deep discharge.

Extend charging times

Many of today’s mobile devices have a fast charge option that enables users to supercharge them in minutes rather than hours. This is convenient when we’re in a rush, but should be avoided otherwise.

Why? Because charging a battery too quickly reduces its storage capacity.

Physically, the shuttling of lithium metal and lithium ions between the electrodes in lithium-ion batteries is a slow process. Therefore, charging at lower rates allows more complete shuttling to occur, which enhances the battery’s charge capacity.

For example, charging a phone in five minutes compared with the standard two hours can reduce the battery capacity for that charge cycle by more than 20%.


Read more: How to make batteries that last (almost) forever


Keep the temperature just right

Fortunately, for most parts of the country, temperatures in Australia sit between 0℃ and 45℃ throughout the year. This is the exact range in which lithium-ion batteries can be stored to maintain optimal long-term charge capacity.

Below 0℃, the amount of power available within the battery system is reduced because of a restriction in the movement of lithium metal and lithium ions within the electrodes and through the electrolyte.

Above 45℃, the amount of power available is actually enhanced compared with lower temperatures, so you can get a little more “juice” from your battery under hotter conditions. However, at these temperatures the degradation of the battery is also greatly accelerated, so over an extended period of time its ability to store charge will be reduced.

As a result, phones should be kept out of direct sunlight for prolonged periods, especially in summer when surface temperatures can increase to above 70℃.

Mobile phones only have a limited number of charge cycles before the battery loses its capacity to recharge entirely.
www.shutterstock.com

Use battery-saving modes

Aaron Carroll and Gernot Heiser from Data61 analysed the power consumption of different smartphone components under a range of typical scenarios.

They concluded there are a handful of simple software and hardware strategies that can be used to preserve battery life.

  • Reduce screen brightness. The easiest way to conserve battery life while maintaining full function is to reduce the brightness of the screen. For devices such as mobile phones that have an organic light emitting diode (OLED) display, you can also use the “light on dark” option for viewing.

  • Turn off the cellular network or limit talk time. The connection to the cellular network uses the global system for mobile communication (GSM) module. The GSM is the most dominant energy-consuming component in a mobile phone, so it is beneficial to turn it off altogether or at least limit call time.

  • Use Wi-Fi, not 4G. With Wi-Fi being up to 40% less power-hungry than 4G for internet browsing, turning off cellular data and using Wi-Fi instead will help your battery life.

  • Limit video content. Video processing is one of the most power-consuming operations on a mobile device.

  • Turn on smart battery modes. All modern mobile devices have a smart battery saving mode (for instance, Android has Power Saving Mode and iOS has Low Power Mode). These software features modify central processing unit (CPU) usage for different apps, screen brightness, notifications and various hardware options to reduce energy consumption.

  • Use Airplane mode. This mode typically disables GSM, Wi-Fi, bluetooth and GPS functions on your devices. When turning off all such auxiliary functions, the device will use only up to 5% of its usual energy consumption with the screen off. For comparison, simply having your device in idle can still use more than 15%.

Enhancing your phone’s battery usability requires a combination of limiting the use of power-hungry hardware and software, as well as handling mobile devices so as to maximise the charge capacity and minimise battery degradation.

The ConversationBy adopting these simple strategies, users can extend their battery life by more than 40% in any given day while maintaining a more consistent battery capacity throughout the lifetime of the device.

Jacek Jasieniak, Associate Professor of Materials Science & Engineering and Director of the Monash Energy Materials & Systems Institute (MEMSI), Monash University

This article was originally published on The Conversation. Read the original article.

Explainer: what can Tesla’s giant South Australian battery achieve?


Ariel Liebman, Monash University and Kaveh Rajab Khalilpour, Monash University

Last Friday, world-famous entrepreneur Elon Musk jetted into Adelaide to kick off Australia’s long-delayed battery revolution.

The Tesla founder joined South Australian Premier Jay Weatherill and the international chief executive of French windfarm developer Neoen, Romain Desrousseaux, to announce what will be the world’s largest battery installation.

The battery tender won by Tesla was a key measure enacted by the South Australian government in response to the statewide blackout in September 2016, together with the construction of a 250 megawatt gas-fired power station.

//platform.twitter.com/widgets.js

The project will incorporate a 100MW peak output battery with 129 megawatt hours of storage alongside Neoen’s Hornsdale windfarm, near Jamestown. When fully charged, we estimate that this will be enough to power 8,000 homes for one full day, or more than 20,000 houses for a few hours at grid failure, but this is not the complete picture.

The battery will support grid stability, rather than simply power homes on its own. It’s the first step towards a future in which renewable energy and storage work together.

How Tesla’s Powerpacks work

Tesla’s Powerpacks are lithium-ion batteries, similar to a laptop or a mobile phone battery.

In a Tesla Powerpack, the base unit is the size of a large thick tray. Around sixteen of these are inserted into a fridge-sized cabinet to make a single Tesla “Powerpack”.

With 210 kilowatt-hour per Tesla Powerpack, the full South Australian installation is estimated to be made up of several hundred units.

To connect the battery to South Australia’s grid, its DC power needs to be converted to AC. This is done using similar inverter technology to that used in rooftop solar panels to connect them to the grid.

A control system will also be needed to dictate the battery’s charging and discharging. This is both for the longevity of battery as well to maximise its economic benefit.

For example, the deeper the regular discharge, the shorter the lifetime of the battery, which has a warranty period of 15 years. To maximise economic benefits, the battery should be charged during low wholesale market price periods and discharged when the price is high, but these times are not easy to predict.

More research is needed into better battery scheduling algorithms that can predict the best charging and discharging times. This work, which we are undertaking at Monash Energy Materials and Systems Institute (MEMSI), is one way to deal with unreliable price forecasts, grid demand and renewable generation uncertainty.

The battery and the windfarm

Tesla’s battery will be built next to the Hornsdale wind farm and will most likely be connected directly to South Australia’s AC transmission grid in parallel to the wind farm.

Its charging and discharging operation will be based on grid stabilisation requirements.

This can happen in several ways. During times with high wind output but low demand, the surplus energy can be stored in the battery instead of overloading the grid or going to waste.

Conversely, at peak demand times with low wind output or a generator failure, stored energy could be dispatched into the grid to meet demand and prevent problems with voltage or frequency. Likewise, when the wind doesn’t blow, the battery could be charged from the grid.

The battery and the grid – will it save us?

In combination with South Australia’s proposed gas station, the battery can help provide stability during extreme events such as a large generator failure or during more common occurrences, such as days with low wind output.

At this scale, it is unlikely to have a large impact on the average consumer power price in South Australia. But it can help reduce the incidence of very high prices during tight supply-demand periods, if managed optimally.

For instance, if a very hot day is forecast during summer, the battery can be fully charged in advance, and then discharged to the grid during that hot afternoon when air conditioning use is high, helping to meet demand and keep wholesale prices stable.

More importantly, Tesla’s battery is likely to be the first of many such storage installations. As more renewables enter the grid, more storage will be needed – otherwise the surplus energy will have to be curtailed to avoid network overloading.

Another storage technology to watch is off-river pumped hydro energy storage (PHES), which we are modelling at the Australia-Indonesia Energy Cluster.

The ConversationThe South Australian Tesla-Neoen announcement is just the beginning. It is the first step of a significant journey towards meeting the Australian Climate Change Authority’s recommendation of zero emissions by at least 2050.

Ariel Liebman, Deputy Director, Monash Energy Materials and Systems Instutute, and Senior Lecturer, Faculty of Information Technology, Monash University and Kaveh Rajab Khalilpour, Senior Research Fellow, Caulfield School of Information Technology, Monash University

This article was originally published on The Conversation. Read the original article.

With battery storage to the rescue, the Kodak moment for renewables has finally arrived


Kevin's Walk on the Wild Side

Image 20170319 6133 1xq9awd
AAP/Lukas Coch

David Holmes, Monash University

Who would have thought that, scarcely five weeks after Treasurer Scott Morrison, paraded a chunk of coal in parliament, planning for Australia’s energy needs would be dominated by renewables, batteries and hydro? The Conversation

For months now, the Coalition has been talking down renewables, blaming them for power failures, blackouts, and an unreliable energy network.

South Australia was bearing the brunt of this campaign. The state that couldn’t keep its lights on had Coalition politicians and mainstream journalists vexatiously attributing the blame to its high density of renewables.

But this sustained campaign, which would eventually hail “clean coal” as Australia’s salvation, all came unstuck when tech entrepreneur Elon Musk came out with a brilliant stunt: to install a massive battery storage system in South Australia “in 100 days, or it’s free”.

The genius of the stunt was not to win an instant contract to…

View original post 1,204 more words

Flight 370 Report Shows Underwater Beacon Battery Had Expired


TIME

The first comprehensive report into the disappearance of Malaysia Airlines Flight 370 showed that the jet’s underwater locator beacon’s battery had expired — but offered few other clues on the one-year anniversary of the plane’s disappearance.

Malaysia’s prime minister said Sunday that the country remains committed to finding MH370, which disappeared with 239 people aboard.

“The lack of answers and definitive proof — such as aircraft wreckage — has made this more difficult to bear,” Najib Razak. “Malaysia remains committed to the search, and hopeful that MH370 will be found.”

The Malaysian team investigating the disappearance of MH370 released a 584-page interim report …

Read more from our partners at NBC News

View original post

How to increase your iPhone’s battery life on iOS 7


Gigaom

With the introduction of iOS 7, Apple added a ton of new and exciting features to your iPhone. However, in order to show off all of these new features, Apple has decided to turn them on: all of them. There’s an opt-out method (of sorts) when it comes to their use, but depending on the age of the device, this can decrease both performance and battery life. The problem most users are encountering is that they don’t know how to selectively opt-out of the features they do not use.

The following will outline how you can fine tune your iOS 7 experience, taking advantage of the features you like and turning off the features you don’t. In the end, you may find that you won’t need to charge your iPhone quite as often.

Settings with the biggest impact

Conserve Your Battery Life

Dim the brightness setting: If you think that iOS 7’s…

View original post 1,409 more words